skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Kuang-Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Misconceptions about core linguistic concepts like mutable variables, mutable compound data, and their interaction with scope and higher-order functions seem to be widespread. But how do we detect them, given that experts have blind spots and may not realize the myriad ways in which students can misunderstand programs? Furthermore, once identified, what can we do to correct them? In this paper, we present a curated list of misconceptions, and an instrument to detect them. These are distilled from student work over several years and match and extend prior research. We also present an automated, self-guided tutoring system. The tutor builds on strategies in the education literature and is explicitly designed around identifying and correcting misconceptions. We have tested the tutor in multiple settings. Our data consistently show that (a) the misconceptions we tackle are widespread, and (b) the tutor appears to improve understanding. 
    more » « less
  2. When novice programming students already know one programming language and have to learn another, what issues do they run into? We specifically focus on one or both languages being functional, varying along two axes: syntax and semantics. We report on problems, especially persistent ones. This work can be of immediate value to educators and also sets up avenues for future research. 
    more » « less
  3. Context: Gradually-typed languages allow typed and untyped code to interoperate, but typically come with significant drawbacks. In some languages, the types are unreliable; in others, communication across type boundaries can be extremely expensive; and still others allow only limited forms of interoperability. The research community is actively seeking a sound, fast, and expressive approach to gradual typing. Inquiry: This paper describes Static Python, a language developed by engineers at Instagram that has proven itself sound, fast, and reasonably expressive in production. Static Python’s approach to gradual types is essentially a programmer-tunable combination of the concrete and transient approaches from the literature. Concrete types provide full soundness and low performance overhead, but impose nonlocal constraints. Transient types are sound in a shallow sense and easier to use; they help to bridge the gap between untyped code and typed concrete code. Approach: We evaluate the language in its current state and develop a model that captures the essence of its approach to gradual types. We draw upon personal communication, bug reports, and the Static Python regression test suite to develop this model. Knowledge: Our main finding is that the gradual soundness that arises from a mix of concrete and transient types is an effective way to lower the maintenance cost of the concrete approach. We also find that method-based JIT technology can eliminate the costs of the transient approach. On a more technical level, this paper describes two contributions: a model of Static Python and a performance evaluation of Static Python. The process of formalization found several errors in the implementation, including fatal errors. Grounding: Our model of Static Python is implemented in PLT Redex and tested using property-based soundness tests and 265 tests from the Static Python regression suite. This paper includes a small core of the model to convey the main ideas of the Static Python approach and its soundness. Our performance claims are based on production experience in the Instagram web server. Migrations to Static Python in the server have caused a 3.7\% increase in requests handled per second at maximum CPU load. Importance: Static Python is the first sound gradual language whose piece-meal application to a realistic codebase has consistently improved performance. Other language designers may wish to replicate its approach, especially those who currently maintain unsound gradual languages and are seeking a path to soundness. 
    more » « less